ID: 755

x+y = 4z, x*y = 4z^2, express x-y in z

Aligned LLM's Response:

To can express x - y in terms of z using the given equations : \n \n x + y = 4 z \n x \ * y = 4 z ^ 2 \n \n First , let ' s solve for x in the second equation : \n \n x \ * y = 4 z ^ 2 \n x = 4 z ^ 2 / y \n \n Now , substitute this expression for x in the first equation : \n \n x + y = 4 z \n ( 4 z ^ 2 / y ) + y = 4 z \n \n Now , let ' s solve for y : \n \n ( 4 z ^ 2 / y ) + y = 4 z \n 4 z ^ 2 / y + y = 4 z \n y = ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 / y + 1 ) \n \n Now , we can substitute this expression for y in the first equation to express x in terms of z : \n \n x + y = 4 z \n x + (( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 / y + 1 )) = 4 z \n \n Now , let ' s simplify the equation : \n \n x + ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 / y + 1 ) = 4 z \n x = 4 z ^ 2 / ( 4 z ^ 2 / y + 1 ) - ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 / y + 1 ) \n \n Now , let ' s solve for y : \n \n y = ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 / y + 1 ) \n \n Now , substitute this expression for y in the equation above to express x in terms of z : \n \n x = 4 z ^ 2 / ( 4 z ^ 2 / ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 / y + 1 ) + 1 ) - ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 / ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 / y + 1 ) + 1 ) \n \n x = 4 z ^ 2 / ( 4 z ^ 2 / ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 / ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 + 4 z ) + 1 ) + 1 ) - ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 / ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 + 4 z ) + 1 ) \n \n x = 4 z ^ 2 / ( 4 z ^ 2 / ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 + 4 z ) + 1 ) - ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 / ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 + 4 z ) + 1 ) \n \n x = 4 z ^ 2 / ( 4 z ^ 2 + 4 z ) - ( 4 z ^ 2 + 4 z ) / ( 4 z ^ 2 + 4 z ) \n \n x = 4 z ^ 2 - 4 z ^ 2 \n \n x = 0 \n \n There fore , x - y = 0 in terms of z . </s>

Legend: Shifted positions  |  Marginal positions  |  Unshifted positions

Token Distributions

Previous
Home
Next